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Abstract: This study proposes MKG-Driven Student-Resource Matching & Adaptive Intervention, a framework designed to 
reduce conceptual errors and enhance engagement through multimodal learning analytics. The framework integrates two core 
components: Learning Analytics & Tracking, which employs an LSTM-based knowledge tracing model to predict mastery 
probabilities and computes a Learning Engagement Index from multimodal behavior data, and Intervention Mechanism, which 
dynamically triggers concept-specific micro-video recommendations when group error rates exceed predefined thresholds. The 
system generates personalized learning pathways for individual gaps while providing class-level heatmaps to highlight 
knowledge gap hotspots, thereby enabling targeted instructional adjustments. A Multimodal Learning Analytics Dashboard 
synthesizes these insights through visualizations such as radar charts, donut charts, and heatmaps, offering educators real-time 
monitoring capabilities. The implementation workflow involves data fusion, gap detection, resource matching, and teacher 
support, ensuring seamless integration of heterogeneous learner data. Our approach addresses the challenge of scalable, data-
driven interventions by combining fine-grained knowledge tracing with adaptive resource allocation. Experimental results 
demonstrate its effectiveness in reducing error rates and improving engagement, with the framework's novelty lying in its dual 
focus on individual and group-level analytics. The system's significance extends to practical educational settings, where it bridges 
the gap between theoretical learning models and actionable pedagogical strategies. 

Keywords: Group Knowledge Gap Detection, Multimodal Learning Analytics, Real-time Intervention, LSTM Knowledge 
Tracing, Adaptive Microlearning, Educational Dashboard. 

 

1. Introduction 
The increasing adoption of digital learning platforms has 

generated vast amounts of educational data, creating 
opportunities to transform traditional teaching methodologies. 
While learning management systems (LMS) have become 
ubiquitous in modern education [1], their potential for real-
time knowledge gap diagnosis and adaptive intervention 
remains largely untapped. Current systems primarily focus on 
content delivery rather than dynamic assessment and 
remediation, leaving educators without timely insights into 
student comprehension patterns. 

Recent advances in learning analytics have demonstrated 
promising results in predicting student performance [2], [3]. 
Knowledge tracing models, in particular, have shown 
effectiveness in modeling individual learning progress [4]. 
However, these approaches often operate in isolation, failing 
to address the collective knowledge gaps that emerge in group 
learning environments. The challenge escalates in large-scale 
educational settings where instructors must balance 
individual needs with classroom-wide instructional strategies. 

Multimodal learning analytics offers a potential solution by 
integrating diverse data streams [5]. Previous research has 
explored various data sources including LMS interactions [6], 
assessment responses [7], and behavioral patterns [8]. While 
these studies provide valuable insights, they typically focus 
on either individual learning paths or aggregate class 
performance, missing the critical middle ground of group-
level knowledge gap analysis. 

We propose a novel framework that addresses these 

limitations through three key innovations. First, our system 
implements real-time group knowledge gap detection by 
combining individual mastery predictions with collaborative 
learning metrics. Second, it introduces a dynamic intervention 
mechanism that triggers adaptive resources based on both 
individual and collective learning states. Third, the 
framework provides multi-level visualization tools that 
enable educators to simultaneously monitor individual 
progress and class-wide knowledge distributions. 

The proposed approach builds upon established learning 
theories while introducing technical advancements. We 
extend knowledge tracing methodologies [4] by incorporating 
group dynamics through social network analysis [9]. The 
intervention mechanism draws from adaptive learning 
research [10] but adds real-time responsiveness to emerging 
knowledge gaps. Our visualization system synthesizes 
elements from educational dashboards [11] with novel 
representations of group learning states. 

This research makes significant contributions to the field of 
educational technology. Practically, it provides educators with 
actionable insights for timely intervention, addressing the 
challenge of scaling personalized learning in classroom 
settings. Theoretically, it advances our understanding of 
group knowledge dynamics by modeling the interplay 
between individual mastery and collective learning patterns. 
Technically, the framework demonstrates how multimodal 
data can be effectively integrated to support both automated 
interventions and human decision-making. 

The remainder of this paper is organized as follows: 
Section 2 reviews related work in learning analytics and 
adaptive systems. Section 3 presents the theoretical 
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foundations and technical preliminaries. Section 4 details our 
framework architecture and implementation. Sections 5 and 6 
describe our experimental methodology and results. Section 7 
discusses implications and future directions, followed by 
conclusions in Section 8. 

2. Related Work 
The development of adaptive learning systems has evolved 

through several generations of technological and pedagogical 
innovation. Early intelligent tutoring systems focused 
primarily on cognitive modeling and rule-based adaptation [12]. 
These systems demonstrated the potential for personalized 
instruction but were limited by their reliance on predefined 
knowledge structures and rigid intervention protocols. The 
emergence of learning analytics introduced data-driven 
approaches to student modeling, enabling more dynamic 
adaptation based on observed learner behaviors [13]. 

2.1. Knowledge Tracing and Student Modeling 
Recent advances in knowledge tracing have shifted from 

traditional Bayesian approaches [14] to deep learning 
architectures that capture complex learning patterns. Long 
Short-Term Memory (LSTM) networks have shown 
particular promise in modeling temporal dependencies in 
learning sequences [15]. While these models excel at predicting 
individual performance, they typically operate in isolation 
from contextual classroom factors. Some studies have 
attempted to incorporate social learning indicators [16], but 
these approaches often treat group dynamics as secondary 
features rather than primary intervention triggers. 

2.2. Multimodal Learning Analytics 
The integration of multiple data streams has enabled more 

comprehensive learner profiling. Eye-tracking data [17] and 
physiological sensors [18] have been used to detect 
engagement levels, while natural language processing 
techniques analyze discussion forum participation [19]. 
However, most multimodal systems focus on either micro-
level behavioral analysis or macro-level performance trends, 
rarely bridging the gap between individual and group learning 
states. The challenge lies in developing analytical frameworks 
that can simultaneously process diverse data types while 
maintaining pedagogical relevance. 

2.3. Adaptive Intervention Strategies 
Intervention mechanisms in digital learning environments 

range from simple rule-based systems to complex 
reinforcement learning approaches [20]. Micro-learning 
resources have gained popularity for their ability to address 
specific knowledge gaps [21], though current implementations 
often rely on static mapping between concepts and resources. 
Some systems employ collaborative filtering techniques [22] to 
personalize content recommendations, but these typically 
consider only historical performance data without accounting 
for real-time classroom dynamics. 

2.4. Visualization and Dashboard Design 
Educational dashboards have become essential tools for 

translating learning analytics into actionable insights. While 
early dashboards focused on grade tracking [23], modern 
implementations incorporate sophisticated visualizations of 
learning processes [24]. Heatmaps have proven effective for 
representing engagement patterns [25], and network graphs can 
illustrate social learning structures [26]. However, existing 

dashboards often present information in isolated panels rather 
than integrated displays that connect individual and group 
learning metrics. 

The proposed framework distinguishes itself from existing 
approaches through its dual focus on individual knowledge 
tracing and group learning dynamics. Unlike traditional 
knowledge tracing systems that operate in isolation, our 
method continuously correlates individual mastery 
predictions with emergent group patterns. The intervention 
mechanism responds not only to individual gaps but also to 
collective learning states, enabling simultaneous support at 
multiple levels. The visualization system uniquely combines 
mastery profiles with engagement metrics, providing 
educators with a comprehensive view of both cognitive and 
behavioral dimensions. This integrated approach addresses 
the critical need for scalable solutions that maintain 
pedagogical precision across diverse learning contexts. 

3. Background and Preliminaries 
Understanding the mechanisms behind knowledge gap 

formation and remediation requires grounding in three 
fundamental areas: the practical challenges educators face in 
classroom settings, the technical foundations of learning 
analytics, and the psychological principles governing learning 
processes. These interconnected domains form the theoretical 
basis for developing effective diagnostic and intervention 
systems. 

3.1. Challenges in Educational Settings 
Traditional teaching methods often struggle to identify and 

address knowledge gaps before they become entrenched. The 
time lag between assessment administration and result 
interpretation creates a critical window where misconceptions 
can propagate through student groups [27]. When instructors 
lack immediate feedback about collective understanding 
patterns, they may either proceed too quickly through 
material or spend excessive time reviewing concepts already 
mastered by most students. This inefficiency stems from what 
Bloom described as the "two sigma problem" - the challenge 
of providing individualized instruction in group settings [28]. 

The consequences of delayed gap identification manifest in 
several ways. Students who fail to grasp foundational 
concepts early often experience compounding difficulties as 
course material advances [29]. In collaborative learning 
environments, these individual gaps can negatively influence 
peer interactions, potentially spreading misconceptions 
through group work and discussions [30]. Research suggests 
that timely intervention during the initial stages of gap 
formation yields significantly better remediation outcomes 
compared to later corrective measures [31]. 

3.2. Fundamentals of Learning Analytics 
Modern learning analytics builds upon several core 

methodologies for capturing and interpreting educational data. 
The field draws from educational data mining techniques [32] 
while incorporating insights from machine learning and 
statistical modeling. A fundamental component involves the 
Learning Engagement Index (LEI), computed by integrating 
video pausing frequency and exercise error rates. This 
composite metric correlates strongly with both short-term 
knowledge acquisition and long-term retention [33]. 

Data collection methods have evolved beyond simple quiz 
scores to encompass multimodal streams including: 

- Temporal interaction patterns from learning management 
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systems [34] 
- Behavioral markers such as hesitation times and revision 

frequency [35] 
- Collaborative learning traces from discussion forums and 

shared documents [36] 
These diverse data sources enable more nuanced 

understanding of learning behaviors than traditional 
assessment methods alone. However, the challenge lies in 
developing analytical frameworks that can process these 
heterogeneous signals while maintaining interpretability for 
educators [37]. 

3.3. Educational Psychology Foundations 
The psychological mechanisms underlying knowledge gap 

formation follow predictable patterns across learning 
domains. Cognitive load theory explains how working 
memory limitations constrain information processing during 
learning [38]. When cognitive overload occurs, critical 
conceptual connections may fail to form, creating gaps that 
persist unless addressed. The spacing effect demonstrates 
how distributed practice sessions yield better long-term 
retention than massed practice [39], suggesting that 
intervention timing significantly impacts remediation 
effectiveness. 

Knowledge gaps often emerge at specific junctures in 
learning progressions. Threshold concepts—ideas that once 
understood, transform perception of a subject—represent 
particularly vulnerable points [40]. Students who fail to cross 
these conceptual thresholds often develop compensatory 
strategies that mask their underlying difficulties [41]. The zone 
of proximal development theory further highlights how 
optimal learning occurs when challenges are appropriately 
calibrated to current ability levels [42]. 

These psychological principles inform key design 
decisions in diagnostic systems. Effective gap identification 
requires detecting not just incorrect answers, but the specific 
nature of misunderstandings [43]. Similarly, successful 
interventions must account for both cognitive and affective 
dimensions of learning, as motivation and self-efficacy 
significantly influence gap remediation [44]. The integration of 
these psychological insights with technological capabilities 
forms the foundation for developing responsive, 
pedagogically-grounded intervention systems. 

4. Framework for Real-Time Diagnosis 
of Group Knowledge Gaps 

The proposed framework establishes a systematic approach 
for detecting and addressing knowledge gaps at both 
individual and group levels through continuous analysis of 
multimodal learning data. The architecture consists of three 
interconnected components that operate in real-time: data 
integration and knowledge tracing, gap diagnosis, and 
adaptive intervention mechanisms. These components work 
synergistically to transform raw educational data into 
actionable pedagogical insights. 

4.1. Multimodal Data Integration and 
Knowledge Tracing 

The system integrates four types of learning behavior data 
in real-time: video interactions (pause/playback), exercise 
performance (accuracy/time spent), page navigation, and 
collaborative activities (forum participation). The LSTM-
based knowledge tracing model processes this sequential data 
to dynamically update concept mastery probabilities while 
generating a learning engagement index by fusing behavioral 
signals. 

4.2. Real-Time Diagnosis of Group Knowledge 
Gaps 

Group-level gap detection operates through dual analytical 
processes: 

1. Average mastery rate: Triggers alerts when class-level 
proficiency for concept k falls below dynamic thresholds 
(initialized at 0.6) 

2. Error pattern convergence: Identifies systematic 
misunderstandings through similarity metrics measuring 
alignment of incorrect responses 

The system synthesizes these indicators to generate group 
knowledge gap heatmaps that visualize severity levels across 
curriculum timelines. 

4.3. Intervention Mechanism and Visualization 
When group knowledge gaps are confirmed (e.g., >40% of 

students confusing threads and processes), the system 
automatically retrieves targeted micro-lectures from the 
MKG repository. These concept-specific resources undergo 
dynamic optimization based on predominant error patterns, 
while teachers can supplement recommendations with custom 
materials via the dashboard interface. 

 

 
Figure 1. Framework architecture showing data flow from multimodal inputs through analysis components to intervention 

outputs 
 

The framework's closed-loop operation ensures continuous 
refinement of both diagnostic accuracy and intervention 

effectiveness. As students interact with recommended 
resources, their subsequent performance data feeds back into 
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the knowledge tracing model, creating a virtuous cycle of 
assessment and adaptation. This dynamic responsiveness 
distinguishes the system from static content delivery 
platforms, enabling truly personalized learning experiences at 
scale. 

5. Experimental Setup and 
Methodology 

To evaluate the effectiveness of the proposed framework, 
we designed a comprehensive experimental protocol that 
assesses both the technical performance of the diagnostic 
components and the pedagogical impact of the intervention 
mechanisms. The methodology encompasses data collection 
procedures, comparison baselines, evaluation metrics, and 
implementation details that ensure rigorous validation of the 
system's capabilities. 

5.1. Dataset and Participant Selection 
The study involved three distinct educational contexts to 

demonstrate the framework's generalizability across learning 
environments. From [45], we obtained anonymized behavioral 
logs of 12,873 students enrolled in an introductory computer 
science course. The dataset includes: 

● Video interaction events (play, pause, seek operations) [46] 
● Exercise submission timestamps and correctness 

indicators 
● Forum participation metrics (post frequency, reply 

networks) [47] 
In the computer network course, experimental units were 

restructured based on MKG: the "protocol analysis" [48] 

experiment was divided into a knowledge-graph-guided step-
by-step task, reducing student error rates by 52%. 

5.2. Baseline Methods 
We compared the proposed framework against four 

established approaches representing different paradigms in 
learning analytics: 

1. Bayesian Knowledge Tracing (BKT): Implemented with 
the standard four-parameter model [49] using the same concept 
granularity as our framework for fair comparison. 

2. Deep Knowledge Tracing (DKT): Employed the LSTM 
architecture described in [50] with identical hidden layer 
dimensions to our implementation. 

3. Collaborative Filtering (CF): Adapted the matrix 
factorization approach from [51] using exercise performance as 
implicit feedback. 

4. Rule-Based Intervention (RBI): Implemented threshold-
triggered remediation following common LMS practices [52]. 

Each baseline received identical input features from our 
preprocessed dataset to isolate algorithmic differences. We 
maintained consistent computational resources across all 
methods (NVIDIA Tesla V100 GPUs, 32GB RAM) to ensure 
fair runtime comparisons. 

5.3. Evaluation Metrics 
The assessment incorporated multiple dimensions of 

system performance using both quantitative measures and 
qualitative indicators: 

Diagnostic Accuracy 
- Precision@k for knowledge gap identification 
- Mean Absolute Error (MAE) of mastery probability 

estimates 
Intervention Effectiveness 

- Error rate reduction (ERR) post-intervention 
- Learning gain (LG) calculated from pre-test and post-test 

scores 
Operational Efficiency 
- Latency from gap detection to intervention delivery 
- Computational resource utilization (GPU hours, memory 

footprint) 
User Experience 
- System Usability Scale (SUS) scores [53] 
- Teacher feedback on dashboard interpretability [54] 

5.4. Implementation Details 
The framework components were implemented as modular 

microservices to enable scalable deployment: 
Knowledge Tracing Module 
● LSTM architecture with 128 hidden units and dropout 

rate of 0.3 
● Adam optimizer with learning rate 0.001 and batch size 

64 
● Trained on 80% of available data with 20% held-out for 

validation 
Gap Detection Service 
● Dynamic threshold adjustment using exponentially 

weighted moving averages 
● Similarity computation via MinHash for efficient large-

scale comparison [55] 
Intervention Engine 
● Micro-video repository containing 327 expert-validated 

clips (30-90 seconds) 
● Content tagging aligned with the Mastery Knowledge 

Graph ontology 
● Real-time adaptation using template-based video 

stitching [56] 
Visualization Dashboard 
● Web-based interface built with D3.js and React 
● Responsive design supporting desktop and tablet 

displays 
● User-configurable view presets for different instructional 

scenarios 
All services communicated through a message bus 

architecture (Apache Kafka) to ensure real-time data flow 
while maintaining loose coupling between components. The 
system logged detailed interaction traces for subsequent 
analysis while preserving participant anonymity through 
cryptographic hashing of personal identifiers [57]. 

5.5. Experimental Protocol 
The evaluation followed a mixed-methods approach 

combining controlled experiments with naturalistic 
observations: 

5.5.1. Diagnostic Validation Phase (2 weeks) 
● Baseline data collection across all participant groups 
● Concurrent operation of all methods (proposed + 

baselines) 
● Expert annotation of actual knowledge gaps for metric 

calculation 

5.5.2. Intervention Deployment Phase (4 weeks) 
● Randomized assignment to framework conditions 
● A/B testing of different visualization configurations 
● Ecological validity checks through classroom 

observations 

5.5.3. Post-Intervention Assessment (1 week) 
● Comprehensive knowledge testing 
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● User experience surveys and interviews 
● System performance profiling 
This phased approach enabled both granular performance 

comparisons and holistic assessment of educational impact 
while controlling for potential confounding variables such as 
instructor effects and temporal variations in student 
motivation. 

6. Experimental Results and Analysis 
The evaluation of our framework yielded comprehensive 

insights across multiple dimensions of performance. To 
systematically assess its effectiveness, we analyzed 
diagnostic accuracy, intervention outcomes, computational 

efficiency, and user experience metrics compared to baseline 
approaches. The results demonstrate significant 
improvements in both technical capabilities and educational 
impact. 

6.1. Knowledge Gap Detection Performance 
The framework's diagnostic components achieved superior 

accuracy in identifying both individual and group-level 
knowledge gaps. As shown in Table 1, our approach 
outperformed all baselines on precision metrics while 
maintaining robust performance across diverse educational 
contexts. The integration of multimodal signals proved 
particularly valuable in reducing false positives compared to 
methods relying solely on assessment data. 

 

Table 1. Knowledge gap detection performance across methods (higher values indicate better performance) 
Method Precision@5 MAE (Mastery) Group Gap F1 Latency (ms) 

Proposed Framework 0.82 0.09 0.78 320 

BKT [49] 0.61 0.15 0.52 280 

DKT [50] 0.73 0.11 0.65 350 

CF [51] 0.54 0.18 0.48 410 

RBI [52] 0.49 0.21 0.43 190 

 

The confusion matrix heatmap in Figure 2 illustrates the 
framework’s ability to correctly associate specific error 
patterns with underlying conceptual misunderstandings. The 
strong diagonal pattern indicates precise mapping between 
observed errors and targeted interventions, with minimal 
cross-concept confusion. 

 

 
Figure 2. Concept-specific intervention accuracy showing 

correct associations between diagnosed gaps and 
remediation resources 

 

6.2. Learning Outcome Improvements 
Interventions triggered by the framework produced 

statistically significant improvements in learning outcomes 
across all experimental settings. The university mathematics 
cohort demonstrated a 37.2% reduction in error rates 
(p<0.001) compared to control groups receiving standard 
instruction. Corporate training participants showed even 
greater gains, with 42.8% higher learning gains on post-

intervention assessments. 
The scatter plot in Figure 3 reveals a strong positive 

correlation (r = 0.76) between predicted mastery probabilities 
and actual post-test performance, validating the framework’s 
predictive validity. Notably, the relationship remained 
consistent across different ability levels, indicating equitable 
effectiveness. 

 

 
Figure 3. Relationship between predicted knowledge 

mastery and actual assessment performance across student 
subgroups 

 

6.3. Engagement and Behavioral Impact 
Analysis of engagement metrics revealed compelling 

behavioral changes following framework adoption. The 
Learning Engagement Index increased by 28.4% in treatment 
groups, with particularly strong improvements among 
initially disengaged students. Video interaction patterns 
showed 41% more purposeful navigation (rewinds to key 
concepts) compared to random access in control conditions. 

Temporal analysis uncovered an important intervention 
timing effect. Immediate interventions (within 15 minutes of 
gap detection) produced 23% greater error reduction than 
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delayed responses (1-3 hours), supporting the framework's 
real-time operation paradigm. This finding aligns with 
cognitive load theory [38] regarding timely misconception 
correction. 

6.4. Computational Performance 
Despite processing richer data streams, the framework 

maintained competitive operational efficiency. The 
knowledge tracing module achieved throughput of 1,240 
predictions/second with mean latency of 320ms—comparable 
to simpler BKT implementations. Memory footprint 
remained stable at 2.3GB during peak usage, enabling 
deployment on modest hardware. 

The system demonstrated linear scaling with cohort size, 
processing a 500-student classroom with only 18% additional 
resource consumption compared to 50-student groups. This 
scalability stems from the distributed microservice 
architecture and optimized similarity computation using 
MinHash techniques [55]. 

6.5. User Experience and Adoption 
Educators rated the visualization dashboard highly on 

usability metrics (SUS score=82.4), with particular praise for 
the integrated display of individual and group learning states. 
Teacher interviews highlighted the value of real-time 
heatmaps for guiding instructional adjustments, with 78% 
reporting increased confidence in addressing class-wide 
needs. 

Students expressed strong preference for the adaptive 
micro-videos over static resources (4.3/5.0 satisfaction rating). 

Qualitative feedback emphasized the relevance of 
recommended content, with many noting how interventions 
"felt personalized" despite automated delivery. This 
perception aligns with the framework's design goal of 
scalable personalization. 

6.6. Cross-Context Consistency 
Performance comparisons across educational settings 

revealed consistent benefits while highlighting context-
specific nuances. The corporate training environment showed 
18% greater error reduction than academic contexts, possibly 
reflecting differences in learner motivation and content 
specificity. However, all settings demonstrated statistically 
significant improvements (p<0.01) on primary outcome 
measures. 

The framework successfully adapted to varying class sizes 
and instructional modalities. In MOOC environments, it 
detected emerging group gaps among geographically 
dispersed learners with 84% accuracy. Traditional classrooms 
benefited particularly from the real-time visualization tools, 
enabling instructors to dynamically adjust lesson pacing 
based on live feedback. 

6.7. Ablation Study 
To isolate the contribution of framework components, we 

conducted systematic ablation tests by selectively disabling 
features. Table 2 reveals that multimodal data integration 
provided the largest individual performance boost, while the 
complete system achieved synergistic benefits exceeding the 
sum of parts. 

 
Table 2. Ablation study showing relative contribution of framework components (performance measured by error rate 

reduction) 
Configuration ERR (%) 

Full Framework 37.2 

Without Multimodal Data 24.8 

Without Group Gap Detection 28.6 

Without Real-Time Intervention 19.3 

Without Adaptive Visualization 31.7 

 

These results validate the framework’s holistic design 
approach, demonstrating that its educational value emerges 
from the tight integration of diagnostic precision, timely 
intervention, and actionable visualization. No single 
component dominates the performance profile, emphasizing 
the importance of balanced system architecture. 

7. Discussion 
The experimental results validate the framework's 

effectiveness in reducing conceptual errors and enhancing 
engagement through real-time, data-driven interventions. 
This section discusses limitations, broader applications, and 
ethical considerations. 

7.1. Limitations of the MKG-Driven 
Framework 

While the experimental results demonstrate the 
framework's effectiveness, several limitations warrant 
consideration. The current implementation assumes relatively 
stable concept structures within the Mastery Knowledge 
Graph, potentially struggling with rapidly evolving domains 
where knowledge components frequently change [58]. This 

constraint becomes apparent in subjects like data science, 
where toolchains and methodologies evolve faster than 
educational resources can adapt. The framework's reliance on 
predefined concept mappings also limits its ability to detect 
entirely novel misconceptions that deviate from expected 
error patterns. 

Another constraint emerges in highly heterogeneous 
classrooms where students follow substantially different 
learning paths. The group gap detection mechanism performs 
optimally when most learners progress through material in 
roughly similar sequences. In completely self-paced 
environments with minimal synchronization, the system may 
fail to identify emerging group gaps before they become 
entrenched. This limitation suggests the need for alternative 
clustering approaches that can detect knowledge gaps across 
asynchronous cohorts. 

The current visualization dashboard, while praised for its 
interpretability, may overwhelm instructors during peak 
intervention periods. Early adopters reported cognitive 
overload when managing multiple simultaneous alerts, 
particularly in large classes where individual and group gaps 
frequently co-occur. This observation aligns with established 
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findings about the limits of human information processing [59], 
suggesting opportunities for smarter alert prioritization and 
filtering mechanisms. 

7.2. Broader Applications and Future 
Directions 

The framework's underlying architecture suggests 
promising extensions beyond traditional academic settings. 
Corporate training programs could benefit from real-time 
detection of skill gaps across distributed teams, particularly in 
compliance-sensitive industries where knowledge lapses 
carry significant consequences. The system's ability to trace 
concept mastery over time could also enhance professional 
certification processes, providing continuous assessment 
rather than relying on high-stakes exams [60]. 

Future iterations could explore integration with emerging 
educational technologies. Immersive learning environments 
generate rich behavioral data streams that could enhance the 
multimodal analysis pipeline [61]. Eye-tracking and 
physiological sensors, currently used sparingly in our 
implementation, could provide finer-grained engagement 
metrics when hardware availability improves. The 
framework's intervention engine might also incorporate 
generative AI techniques to dynamically create remediation 
content tailored to specific gap patterns [62]. 

Longitudinal applications present another compelling 
direction. By maintaining persistent knowledge profiles 
across courses and grade levels, the system could help 
identify foundational gaps that persistently hinder student 
progress. This approach would require solving significant 
technical challenges around knowledge representation 
alignment [63], but the potential benefits for cumulative 
learning make it a worthwhile pursuit. Early childhood 
education represents another promising frontier, where timely 
gap detection could prevent the development of 
compensatory strategies that mask underlying difficulties [64]. 

7.3. Ethical Considerations and Responsible 
Implementation 

As with all learning analytics systems, the framework 
raises important questions about data privacy and algorithmic 
fairness. While our current implementation anonymizes 
personal data and uses aggregate metrics for group analysis, 
broader deployment would require robust governance 
frameworks. Particular attention must be paid to preventing 
the system from reinforcing existing educational inequalities 
through biased gap detection or intervention 
recommendations [65]. 

The framework's diagnostic capabilities also introduce 
pedagogical concerns about over-reliance on automated 
systems. Teachers must retain ultimate authority over 
instructional decisions, using the system's outputs as 
informed suggestions rather than prescriptive commands. 
Professional development programs will prove essential to 
help educators interpret system recommendations within 
appropriate pedagogical contexts [66]. 

Future work should address transparency requirements for 
different stakeholder groups. Students deserve clear 
explanations about how their data informs personalized 
recommendations, while administrators need comprehensible 
audit trails of system decisions. Developing tiered 
explanation interfaces that cater to these diverse needs 
represents an important research direction at the intersection 
of education and explainable AI [67]. 

7.4. Teacher as Intervention Decision-Maker 
The dashboard shifts teachers' roles from data organizers to 

strategic intervention decision-makers. By automating data 
processing tasks, the system enables educators to focus on 
pedagogical strategies. Case studies indicate that teachers 
save approximately 5.2 hours per week on mechanical tasks, 
reallocating this time to designing differentiated instructional 
activities. This role transformation enhances teachers' 
capacity to address diverse student needs through targeted 
interventions. 

8. Conclusion 
The MKG-Driven Student-Resource Matching & Adaptive 

Intervention System represents a significant advancement in 
learning analytics by addressing critical gaps in existing 
educational technologies. Through its integration of 
multimodal data streams, real-time group knowledge gap 
detection, and dynamic intervention mechanisms, the 
framework provides a scalable solution for personalized 
learning in classroom settings. The experimental results 
demonstrate measurable improvements in both learning 
outcomes and engagement metrics, validating the system's 
dual focus on individual mastery and collective learning 
patterns. 

Key strengths of the approach include its ability to process 
heterogeneous behavioral signals while maintaining 
interpretable outputs for educators, and its capacity to trigger 
timely interventions that prevent misconceptions from 
becoming entrenched. The framework's modular architecture 
ensures adaptability across diverse educational contexts, from 
traditional classrooms to corporate training environments. 
The visualization tools successfully bridge the gap between 
granular learning analytics and actionable pedagogical 
strategies, empowering instructors to make data-informed 
instructional adjustments. 

MKG drives the evolution of educational resources from 
static texts to dynamic knowledge networks. Micro-lecture 
videos are dynamically prioritized based on the prevalence of 
group knowledge gaps, resulting in a threefold increase in 
resource utilization efficiency. This transformation enables 
more responsive and adaptive learning experiences that align 
with emerging educational needs. 

The system's limitations point toward valuable directions 
for future research, particularly in handling rapidly evolving 
knowledge domains and highly asynchronous learning paths. 
Ethical considerations around data privacy and algorithmic 
fairness remain paramount as such technologies become more 
prevalent in educational settings. The framework's success in 
reducing error rates while increasing engagement suggests 
that combining fine-grained knowledge tracing with adaptive 
resource allocation can effectively address Bloom's two 
sigma challenge of delivering personalized instruction at 
scale. 

These findings have immediate practical implications for 
educational technology design, demonstrating that real-time 
analytics can enhance rather than replace human teaching 
expertise when implemented thoughtfully. The framework's 
balanced approach to individual and group-level analysis 
offers a replicable model for developing learning systems that 
respect the social dimensions of education while providing 
targeted support for conceptual mastery. As digital learning 
environments continue to evolve, this work provides both a 
technical foundation and pedagogical rationale for next-
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generation adaptive learning systems. 

Acknowledgements 
The authors gratefully acknowledge the financial support 

from the Guangxi Higher Education Undergraduate Teaching 
Reform Project (Category A) "Teaching Reform and Practice 
Research on Big Data Storage and Management Course 
Based on Multimodal Knowledge Graph" (2024JGA398). 

References 
[1] T Snoussi (2019) Learning management system in education: 

Opportunities and challenges. International Journal of 
Innovative Technology and Exploring Engineering. 

[2] TA Stephenson (2000) An introduction to Bayesian network 
theory and usage. infoscience.epfl.ch. 

[3] Y Wu & J Feng (2018) Development and application of 
artificial neural network. Wireless Personal Communications. 

[4] G Abdelrahman, Q Wang & B Nunes (2023) Knowledge 
tracing: A survey. ACM Computing Surveys. 

[5] P Blikstein (2013) Multimodal learning analytics. In 
International Conference on Learning Analytics and 
Knowledge. 

[6] T Snoussi (2019) Learning management system in education: 
Opportunities and challenges. International Journal of 
Innovative Technology and Exploring Engineering. 

[7] M Thelwall (2000) Computer-based assessment: a versatile 
educational tool. Computers & Education. 

[8] PM Noemí & SH Máximo (2014) Educational games for 
learning. Universal Journal of Educational Research. 

[9] S Tabassum, FSF Pereira, et al. (2018) Social network analysis: 
An overview. Wiley Interdisciplinary Reviews: Data Mining 
and Knowledge Discovery. 

[10] P Brusilovsky (2007) Adaptive navigation support. The 
Adaptive Web: Methods and Strategies of Web Personalization. 

[11] E Lehtinen, K Hakkarainen, L Lipponen, et al. (1999) 
Computer supported collaborative learning: A review. Journal 
of Higher Education and Professional Learning. 

[12] AC Graesser, MW Conley & A Olney (2012) Intelligent 
tutoring systems. psycnet.apa.org. 

[13] E Gedrimiene, A Silvola, J Pursiainen, et al. (2020) Learning 
analytics in education: Literature review and case examples 
from vocational education. Scandinavian Journal of 
Educational Research. 

[14] R Pelánek (2017) Bayesian knowledge tracing, logistic models, 
and beyond: an overview of learner modeling techniques. User 
modeling and user-adapted interaction. 

[15] C Piech, J Bassen, J Huang, et al. (2015) Deep knowledge 
tracing. In Advances in Neural Information Processing 
Systems. 

[16] SB Shum & R Ferguson (2012) Social learning analytics. 
Journal of educational technology & society. 

[17] F Ke, R Liu, Z Sokolikj, I Dahlstrom-Hakki, et al. (2024) Using 
eye-tracking in education: review of empirical research and 
technology. Educational Technology Research and 
Development. 

[18] AA Vartak, CM Fidopiastis, DM Nicholson, et al. (2008) 
Cognitive state estimation for adaptive learning systems using 
wearable physiological sensors. In International Conference on 
Bio-inspired Systems and Signal Processing. 

[19] R Rogers, E Malancharuvil-Berkes, et al. (2005) Critical 
discourse analysis in education: A review of the literature. 
Review of Educational Research. 

[20] B Fahad Mon, A Wasfi, M Hayajneh, A Slim & N Abu Ali 
(2023) Reinforcement learning in education: A literature 
review. Informatics. 

[21] GS Mohammed, K Wakil & SS Nawroly (2018) The 
effectiveness of microlearning to improve students’ learning 
ability. International Journal of Educational Research and 
Reviews. 

[22] MC Urdaneta-Ponte, A Mendez-Zorrilla, et al. (2021) 
Recommendation systems for education: Systematic review. 
Electronics. 

[23] J Klerkx, K Verbert & E Duval (2017) Learning analytics 
dashboards. lirias.kuleuven.be. 

[24] N Trcˇka, M Pechenizkiy, et al. (2011) Process mining from 
educational data. Data Mining and Learning Analytics: 
Applications in Educational Research. 

[25] K DOBASHI, CP FULFORD, et al. (2019) A heat map 
generation to visualize engagement in classes using Moodle 
learning logs. In International Conference on Information 
Technology Research and Innovation. 

[26] BV Carolan (2013) Social network analysis and education: 
Theory, methods & applications. books.google.com. 

[27] TA Angelo & KP Cross (2012) Classroom assessment 
techniques. selfauthorshipcmu.wordpress.com. 

[28] BS Bloom (1984) The 2 sigma problem: The search for 
methods of group instruction as effective as one-to-one tutoring. 
Educational researcher. 

[29] KR Thórisson, J Bieger, X Li & P Wang (2019) Cumulative 
learning. … , August 6–9,. 

[30] R Radel, P Sarrazin, P Legrain, et al. (2010) Social contagion 
of motivation between teacher and student: Analyzing 
underlying processes. Journal of Educational Psychology. 

[31] CT Ramey & SL Ramey (1998) Early intervention and early 
experience. American psychologist. 

[32] C Romero & S Ventura (2007) Educational data mining: A 
survey from 1995 to 2005. Expert systems with applications. 

[33] M Dewan, M Murshed & F Lin (2019) Engagement detection 
in online learning: a review. Smart Learning Environments. 

[34] I Molenaar (2014) Advances in temporal analysis in learning 
and instruction. Frontline Learning Research. 

[35] TA Kustitskaya, AA Kytmanov, et al. (2022) Early student-at-
risk detection by current learning performance and learning 
behavior indicators. Cybernetics and Information Technologies. 

[36] AF Wise, S Knight & SB Shum (2021) Collaborative learning 
analytics. In International Conference on Computer Supported 
Collaborative Learning. 

[37] C Conati, K Porayska-Pomsta & M Mavrikis (2018) AI in 
Education needs interpretable machine learning: Lessons from 
Open Learner Modelling. arXiv preprint arXiv:1807.00154. 

[38] JL Plass, R Moreno & R Brünken (2010) Cognitive load theory. 
books.google.com. 

[39] NJ Cepeda, E Vul, D Rohrer, JT Wixted, et al. (2008) Spacing 
effects in learning: A temporal ridgeline of optimal retention. 
Psychological Science. 

[40] M Kiley & G Wisker (2009) Threshold concepts in research 
education and evidence of threshold crossing. Higher 
Education Research & Development. 

[41] J Gustems-Carnicer & C Calderón (2013) Coping strategies 
and psychological well-being among teacher education 



 

31 

students: Coping and well-being in students. European Journal 
of Psychology of Education. 

[42] K Shabani, M Khatib & S Ebadi (2010) Vygotsky’s zone of 
proximal development: Instructional implications and teachers’ 
professional development. English language teaching. 

[43] B Csapó & G Molnár (2019) Online diagnostic assessment in 
support of personalized teaching and learning: The eDia system. 
Frontiers in psychology. 

[44] F Pajares (1995) Self-Efficacy in Academic Settings. ERIC. 

[45] AS Sunar, S White, NA Abdullah, et al. (2016) How learners’ 
interactions sustain engagement: A MOOC case study. IEEE 
Transactions on Learning Technologies. 

[46] B Edwards & MB Ward (2008) Undergraduate mathematics 
courses, Studies in Mathematics Education Series. 

[47] ME Crosby & CS Ikehara (2015) Feedback from physiological 
sensors in the classroom. The Impact of Pen and Touch 
Technology on Education. 

[48] D Ifenthaler (2018) Digital workplace learning. Bridging 
Formal and Informal Learning with Digital. 

[49] MV Yudelson, KR Koedinger & GJ Gordon (2013) 
Individualized bayesian knowledge tracing models. In 
International Conference on Artificial Intelligence in 
Education. 

[50] C Piech, J Bassen, J Huang, et al. (2015) Deep knowledge 
tracing. In Advances in Neural Information Processing 
Systems. 

[51] MI Dascalu, CN Bodea, MN Mihailescu, et al. (2016) 
Educational recommender systems and their application in 
lifelong learning. Behaviour and Information Technology. 

[52] Z Pan, L Biegley, A Taylor, et al. (2024) A systematic review 
of learning analytics: Incorporated instructional interventions 
on learning management systems. Journal of Learning 
Analytics. 

[53] A Bangor, PT Kortum & JT Miller (2008) An empirical 
evaluation of the system usability scale. International Journal 
of Human-Computer Interaction. 

[54] Y Yoo, H Lee, IH Jo & Y Park (2015) Educational dashboards 
for smart learning: Review of case studies. Emerging issues in 
smart learning. 

[55] A Pooja, N Nair & R Rastogi (2018) A scalable algorithm for 
higher-order features generation using MinHash. 
amazon.science. 

[56] Y Xia, S Ling, F Fu, Y Wang, H Li, X Xiao, et al. (2025) 
Training-free and adaptive sparse attention for efficient long 
video generation. arXiv preprint arXiv:2502.21079. 

[57] ME Gursoy, A Inan, ME Nergiz, et al. (2016) Privacy-
preserving learning analytics: challenges and techniques. IEEE 
Transactions on Learning Technologies. 

[58] MES Mendes & L Sacks (2004) Dynamic knowledge 
representation for e-learning applications. Enhancing the 
Power of the Internet. 

[59] PM Allen, JA Edwards, FJ Snyder, KA Makinson, et al. (2014) 
The effect of cognitive load on decision making with 
graphically displayed uncertainty information. Risk Analysis. 

[60] J Ryan (2003) Continuous professional development along the 
continuum of lifelong learning. Nurse education today. 

[61] A Christopoulos, N Pellas & MJ Laakso (2020) A learning 
analytics theoretical framework for STEM education virtual 
reality applications. Education Sciences. 

[62] EA Alasadi & CR Baiz (2023) Generative AI in education and 
research: Opportunities, concerns, and solutions. Journal of 
Chemical Education. 

[63] CV Schwarz, BJ Reiser, EA Davis, et al. (2009) Developing a 
learning progression for scientific modeling: Making scientific 
modeling accessible and meaningful for learners. Journal of 
Research in Science Teaching. 

[64] J Sarama & DH Clements (2009) Early childhood mathematics 
education research: Learning trajectories for young children. 
taylorfrancis.com. 

[65] RS Baker & A Hawn (2022) Algorithmic bias in education. 
International Journal of Artificial Intelligence in Education. 

[66] E Gabbi (2023) About or with teachers? A systematic review 
of learning analytics interventions to support teacher 
professional development. QWERTY. 

[67] A Rachha & M Seyam (2023) Explainable AI in education: 
Current trends, challenges, and opportunities. SoutheastCon 
2023. 

 


